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Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million
positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron
flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from
25.2� 1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284þ91

−64 GeV,
(c) in the entire energy range the positron flux is well described by the sum of a term associated with the
positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term
of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of
Es ¼ 810þ310

−180 GeV is established with a significance of more than 4σ. These experimental data on cosmic
ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation
or from other astrophysical sources.

DOI: 10.1103/PhysRevLett.122.041102

The precision measurement of the positron flux
in primary cosmic rays with the Alpha Magnetic
Spectrometer (AMS) on the International Space Station
(ISS) is presented with a particular emphasis on its behavior
at high energies. The measurement is based on 1.9 million
positrons collected by AMS from May 19, 2011 to
November 12, 2017. This corresponds to a factor of three
increase in statistics compared to our earlier results pub-
lished four to five years ago [1,2]. Complementary to the

present data, we have also published the observation of
low-energy (<50 GeV) complex time structures in cosmic
ray electron and positron fluxes during the same period as
covered in this Letter [3]. Studies of light cosmic ray
antimatter species, such as positrons, antiprotons, and
antideuterons, are crucial for the understanding of new
phenomena in the cosmos [4], because the yield of these
particles from cosmic ray collisions is small. Our published
data have generated widespread interest and discussions of
the observed excess of high-energy positrons. The explan-
ations of these results included three classes of models:
annihilation of dark matter particles [5], acceleration of
positrons to high energies in astrophysical objects [6], and
production of high-energy positrons in the interactions of
cosmic ray nuclei with interstellar gas [7]. Most of these
explanations differ in their predictions for the behavior of
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cosmic ray positrons at high energies. The comprehensive
paper on results for all elementary particles from the first
6.5 years of AMS operations, which includes details of the
analysis and comparison with theoretical models, will be
presented in a separate publication [8]. In this Letter, we
present a precise measurement of primary cosmic ray
positrons up to 1 TeV and analyze the observation of
changing behavior of the cosmic ray positron flux. These
experimental results are crucial for understanding the origin
of high-energy positrons in the cosmos.
Detector.— The description of the AMS detector is

presented in Ref. [9]. The key detector elements used for
the present analysis are the transition radiation detector
(TRD) [10], the time of flight (TOF) counters [11], the
silicon tracker [12], the permanent magnet [13], and the
electromagnetic calorimeter (ECAL) [14]. AMS also has an
array of 16 anticoincidence counters [15] and a ring imaging
Čerenkov detector [16]. The detector performance on orbit is
continuously monitored and it is steady over time.
The tracker accurately determines the particle trajectory

and measures the rigidity R (momentum divided by
charge), the charge jZj in elementary charge units, and
the charge sign of cosmic rays by multiple measurements of
the coordinates in the magnetic field and the particle energy
loss in the silicon layers. The tracker has nine layers, the
first L1 at the top of the detector, the second L2 above the
magnet, six L3 to L8 within the bore of the magnet, and
the last L9 above the ECAL. L2 to L8 constitute the inner
tracker. For jZj ¼ 1 particles the maximum detectable
rigidity is 2 TV over the 3-m lever arm and the charge
resolution is ΔZ ¼ 0.05. The TOF measures jZj with a
resolution ΔZ ¼ 0.05 and velocity β with a resolution
of Δβ=β2 ¼ 4%. The TRD separates positrons eþ from
protons p using a ΛTRD estimator constructed from the ratio
of the log-likelihood probability of the e� hypothesis to
that of the p hypothesis in each layer [1]. The three-
dimensional imaging capability of the 17 radiation length
ECAL allows for an accurate measurement of the e�

energy and of the shower shape. The e� energy, E, is
calibrated at the top of AMS. An ECAL estimator ΛECAL

[17] is used to differentiate e� from p by exploiting their
different shower shapes.
The entire detector has been extensively calibrated in a

test beam at CERN with eþ and e− from 10 to 290 GeV=c,
with p at 180 and 400 GeV=c, and with π from 10 to
180 GeV=c, which produce transition radiation equivalent
to p up to 1.2 TeV=c. Measurements with 18 different
energies and particles at 2000 positions were performed. A
Monte Carlo program based on the GEANT4 10.1 package
[18] is used to simulate physics processes and signals in
the detector.
Event selection.—AMS has collected 1.07 × 1011 cosmic

rays in the first 6.5 years of operation. The data collection
time used in this analysis includes only those seconds
during which the detector was in normal operating

conditions, AMS was pointing within 40° of the local
zenith, and the ISS was outside of the South Atlantic
Anomaly. Because of the influence of the geomagnetic
field, this collection time for galactic cosmic rays increases
with rigidity reaching 1.51 × 108 s above 30 GeV.
Selected events are required to be downward going with

β > 0.8, to have a reconstructed shower in the ECALwith a
matched track in the tracker and the TRD. For the analysis
of the high-energy range, E ≥ 290 GeV, the track is
required to pass through either L1 or L9. Track fitting
quality criteria χ2=d:o:f: < 20 both in the bending and
nonbending planes are applied to ensure good accuracy of
the track reconstruction. The charge measurements in the
TOF and the tracker are required to be consistent with
jZj ¼ 1.
The energy E is required to be greater than 1.2 times the

maximum Størmer cutoff [19] within the AMS field of
view. An alternative procedure, with the cutoff calculated
by backtracing particles from the top of AMS out to 50
Earth’s radii [20] using the most recent International
Geomagnetic Reference Field [21], yields the same results.
Events satisfying the selection criteria are classified into

two categories—positive and negative rigidity data sam-
ples. In this Letter, we consider only the positive rigidity
sample, which comprises positrons, background protons,
and charge confusion electrons, that is, electrons which are
reconstructed in the tracker with positive rigidity due to the
finite tracker resolution or due to interactions with the
detector materials.
The combination of information from the TRD, tracker,

and ECAL enables the efficient separation of the positron
signal events from these background sources using a
template fitting technique. An energy dependent cut
on ΛECAL is applied to remove the bulk of the proton
background.
To distinguish positrons from charge confusion elec-

trons, a charge confusion estimatorΛe
CC is defined using the

technique similar to that of Ref. [22], as presented in the
Supplemental Material [23] including Fig. S1. The number
of positrons and its statistical error in each bin are
determined by fitting signal and background templates to
data by varying their respective normalizations. The two-
dimensional (ΛTRD − Λe

CC) distribution is used to construct
the templates. To fit the data, three templates are defined.
The first two are for the positrons and protons reconstructed
with correct charge sign; the last one is for the charge
confusion electrons. The signal template is identical for
positrons and for electrons if they are reconstructed with the
correct charge sign, and therefore the positron signal
template is taken from high purity electron data below
100 GeV and from electron Monte Carlo simulation
above 100 GeV. The charge confusion electron background
template is from Monte Carlo simulation. The e�

Monte Carlo simulation is verified by the e� test beam
data from 10 to 290 GeV, and by the AMS e− data to 1 TeV.
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The proton background template is taken from high purity
proton data.
An illustration of the fit to the data in the energy range

[370–500] GeV is shown in Fig. S2 of the Supplemental
Material [23]. The projections of the 2D data distribution
onto the ΛTRD and Λe

CC axes are shown together with the
signal and background contributions.
In total, 1.9 million positrons are identified in the energy

range from 0.5 GeV to 1 TeV.
Data analysis.—The isotropic positron flux for the

energy bin Ei of width ΔEi is given by

Φeþ;i ¼
Ni

Aið1þ δiÞTiΔEi
; ð1Þ

where the energy is defined at the top of AMS. The same
energy binning as in our previous publications [2] is used.
Ni is the number of eþ in bin i corrected for the small bin-
to-bin migration using the unfolding procedure described
in Ref. [24]. Ai is the corresponding effective acceptance
that includes geometric acceptance, and the trigger and
selection efficiencies, and is calculated from Monte Carlo
simulation. Ti is the data collection time.
The small corrections δi are estimated by comparing the

efficiencies in data and Monte Carlo simulation of every
selection cut using information from the detectors unrelated
to that cut. Because these efficiencies are the same for
electrons and positrons, they are calculated from the high
statistics electron samples. The corrections δi are found to
have only a very small energy dependence from −5% at
1 GeV, decreasing to −2.4% at 10 GeV, and becoming
constant at −2.8% above 50 GeV.
The detailed study of the systematic errors is the key part

of the analysis. Five sources of systematic error on the
positron flux are identified.
The first source is related to the uncertainty in the

template definitions, which includes the following two
parts: the event selection and the statistical fluctuations. To
examine the systematic errors associated with the selection,
the selection cuts are varied such that the number of
selected events in the corresponding template vary up to
30%. Each variation yields three redefined templates. The
variation of the number of positrons from the fits with the
redefined templates is used to estimate the associated
systematic error. This error amounts to 3% of the flux at
0.5 GeV, <0.5% between 1 and 500 GeV, and 7% for the
energy bin [700–1000] GeV. The systematic error asso-
ciated with fluctuations is measured by varying the shape
of the templates within the statistical uncertainties. This
error amounts to <1% of the flux below 500 GeV, 6% at
[500–700] GeV, and 11% at [700–1000] GeV. These two
errors are added in quadrature.
The second source is the uncertainty in the magnitude

of the charge confusion. The amount of charge confusion
is well reproduced by the Monte Carlo simulation. The
corresponding systematic error accounts for the small

differences between data and the Monte Carlo simulation.
This error is negligible below 200 GeV, 3% of the flux at
[370–500] GeV, and 18% at [700–1000] GeV.
The third source is the uncertainty in the efficiency

corrections δi. The corresponding error amounts to 4% of
the flux at 0.5 GeV, it decreases to 1.1% at 3 GeV, and
slowly rises to 2.5% at [700–1000] GeV. This includes a
correlated systematic error on the flux normalization, which
is estimated to be 1% of the flux independent of energy.
This 1% error is subtracted in quadrature from the total
systematic error for all the fits in this Letter.
The fourth source is the uncertainty in the magnitude of

the event bin-to-bin migration due to the finite energy
resolution. The bin widths ΔEi are chosen to be at least two
times the energy resolution to minimize migration effects
[2]. Unfolding the measured fluxes shows that the bin-to-
bin migration is small: the corresponding error is 2% of the
flux at 0.5 GeV and decreases to < 0.2% above 10 GeV.
The fifth source is the uncertainty in the energy scale,

which causes simultaneous shifts of the measured energies.
As discussed in detail in Ref. [17], the energy scale error is
4% at 0.5 GeV, 2% from 2 to 300 GeV, and 2.5% at 1 TeV.
The total systematic error of the positron flux is taken

as the quadratic sum of the four sources: definition of
templates, charge confusion, the efficiency corrections, and
bin-to-bin migration. The energy scale error is treated as an
uncertainty of the bin boundaries.
Several independent analyses were performed on the

same data sample by different study groups [8]. The results
of those analyses are consistent with the results presented in
this Letter.
Results.—The measured positron flux including statis-

tical and systematic errors is presented in Table SI of
the Supplemental Material [23] as a function of the energy
at the top of AMS. The table also includes Ẽ values,
calculated for a flux ∝E−3 [25] and the corresponding
energy scale errors. The precision of our data allows an
accurate study of the properties of cosmic positrons without
using the traditional positron fraction, defined as the ratio
Φeþ=ðΦeþ þΦe−Þ, which includes the energy dependence
of the electrons.
The presented results are consistent with our earlier data

[1,2], which were based on 1=3 of the current statistics. The
current results greatly improve the accuracy and energy
reach of our measurement. For instance, the error on the
flux in the previous highest energy bin [370–500] GeV [2]
is reduced from 30% to 12% and the energy reach is
increased by a factor of 2 from 500 GeV to 1 TeV.
Figure 1 shows the measured positron spectrum (i.e., the

flux scaled by Ẽ3, Ẽ3Φeþ). In this and the subsequent
figures, the error bars correspond to the quadratic sum of
statistical and systematic errors. As seen, at low energies
from 0.5 to 7.10 GeV there is a significant time variation
of the spectrum due to solar modulation effects [indicated
by a red band [3] ]. Starting from 7.10 GeV this variation
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gradually vanishes and the average positron spectrum is
flattening from 7.10 to 27.25 GeV (green vertical band).
At higher energies, where solar modulation effects are
small [3], it exhibits a complex structure: a rise from
27.25 to 290 GeV (orange vertical band), a maximum at
∼290 GeV followed by a sharp fall.
Figure 2 shows the AMS result together with earlier

experiments [26–31]. The AMS data significantly extend
the measurements into the uncharted high-energy region.
To examine the energy dependence of the positron flux

in a model independent way, the flux spectral index γ is
calculated from the equation

γ ¼ d½logðΦeþÞ�=d½logðEÞ�; ð2Þ

over nonoverlapping energy intervals which are chosen to
have sufficient sensitivity to the spectral index. The energy
interval boundaries are 3.36, 5.00, 7.10, 10.32, 17.98,
27.25, 55.58, 90.19, 148.81, 290, and 1000 GeV that
combine several energy bins defined in Table SI of the
Supplemental Material [23]. The results are presented in
Fig. 3(a). They are stable against the variation of energy
interval boundaries as verified by shifting the boundaries to
higher and lower values by one or two energy bins [see
Fig. S3 of the Supplemental Material [23] ]. As seen in
Fig. 3(a), the positron spectral index exhibits complex
behavior. It decreases (softens) rapidly with energy below
∼7 GeV. In the energy range [7.10–27.25] GeV, it is nearly
energy independent, with an average γ ¼ −2.99� 0.01. It
then rises (hardens) to an average γ ¼ −2.72� 0.04 in the
energy range [55.58–148.81] GeV. Above 148.81 GeV
the spectral index experiences significant decrease
reaching γ ¼ −3.35� 0.32 in the highest energy interval
[290–1000] GeV.
To determine the transition energy E0 where the

spectral index starts rising, we use a double power-law
approximation

ΦeþðEÞ ¼
�
CðE=55.58 GeVÞγ; E ≤ E0;

CðE=55.58 GeVÞγðE=E0ÞΔγ; E > E0:
ð3Þ

A fit to data is performed in the energy range [7.10–
55.58] GeV. The results are presented in Fig. 3(b). The fit
yields E0 ¼ 25.2� 1.8 GeV for the energy where the
spectral index increases and χ2=d:o:f: ¼ 23=31. The sig-
nificance of this increase is established at more than 6σ, as
illustrated in Fig. S4 of the Supplemental Material [23].
The energy E0 corresponds to the start of a significant
excess of the positron flux compared to the lower-energy
trends. Note that the choice of the constant 55.58 GeV,
corresponding to the fit range boundary, defines only the
flux normalization C. It does not affect fitted values of
γ and Δγ.
To determine the transition energy where the spectral

index starts decreasing, we use Eq. (3) to fit the data in the
energy range [55.58–1000] GeV. The results are presented in
Fig. 3(c). The fit yields E0 ¼ 284þ91

−64 GeV for the energy of
the spectral energy decrease and χ2=d:o:f: ¼ 13=16. The
significance of the spectral index decrease at 284þ91

−64 GeV is
established at more than 3σ, as illustrated in Fig. S5 of the
Supplemental Material [23].
This complex behavior of the positron flux (as illustrated

in Fig. 3) is consistent with the existence of a new source of
high-energy positrons with a characteristic cutoff energy,
whether of dark matter [5] or other astrophysical [6] origin.
It is not consistent with the exclusive secondary production
of positrons in collisions of cosmic rays [32].
The accuracy of the AMS data allows for a detailed study

of the properties of the new source of positrons up to 1 TeV.
In this Letter, we present the analysis of the positron
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flux using a minimal model [1,33]. In this model, Φeþ is
parametrized as the sum of a diffuse term and a source term

ΦeþðEÞ ¼
E2

Ê2
½CdðÊ=E1Þγd

þ CsðÊ=E2Þγs expð−Ê=EsÞ�. ð4Þ

The diffuse term describes the low-energy part of the flux
dominated by the positrons produced in the collisions of
ordinary cosmic rays with the interstellar gas. It is char-
acterized by a normalization factor Cd and a spectral index
γd. The source term has an exponential cutoff, which
describes the high-energy part of the flux dominated by
a source. It is characterized by a normalization factor Cs, a
spectral index γs, and a cutoff energy Es. In order to account
for solar modulation effects, the force-field approximation
[34] is used, with the energy of particles in the interstellar
space Ê ¼ Eþ φeþ , where the effective solar potential φeþ

accounts for the solar effects.
Explicitly, we have chosen the first term of Eq. (4) based

on the general trend of the commonly used cosmic ray
propagation models [32,35,36], even though all have large
uncertainties, but all show a maximum of the spectrum
below 10 GeV. The second term is based on our data in
Figs. 3(b) and 3(c), which show that the spectrum changes
its characteristics at 25.2 GeV, where the spectrum shows
the distinct increase, and at 284 GeV, where the spectrum
shows a sharp dropoff.
The constant E1 is chosen to be 7.0 GeV to minimize the

correlation between parameters Cd and γd, and the constant
E2 is chosen to be 60.0 GeV to minimize correlation
between the parameters Cs and γs. The fit of Eq. (4) to the
measured flux yields the inverse cutoff energy 1=Es ¼
1.23� 0.34 TeV−1 corresponding to Es ¼ 810þ310

−180 GeV
and χ2=d:o:f: ¼ 50=68. A complete list of the fit param-
eters is given in Table SII of the Supplemental Material
[23]. All the source term parameters, Cs, γs, and 1=Es, are
found to be time independent whereas the solar modulation
parameter φeþ and the diffuse flux parameters Cd and γd
exhibit some time dependence, as presented in Fig. S6 of
the Supplemental Material [23].
The result of the fit is presented in Fig. 4. As expected,

the diffuse term dominates at low energies and then
gradually vanishes with increasing energy. The source term
dominates the positron spectrum at high energies. It is the
contribution of the source term that leads to the observed
excess of the positron flux above 25.2� 1.8 GeV. The
dropoff of the flux above 284þ91

−64 GeV is very well
described by the sharp exponential cutoff of the source
term. Note that the choice of the E1 and E2 constants does
not affect the shapes nor the magnitudes of the diffuse and
the source terms shown in Fig. 4. The energy dependence
of the spectral index corresponding to the results of the fit
of Eq. (4) is shown in Fig. 3(a).
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FIG. 3. (a) The spectral index of the AMS positron flux in
nonoverlapping energy intervals (red data points). The spectral
index has complex energy dependence with a significant
decrease towards higher energies. (b),(c) A double power-law
fit of Eq. (3) to the flux in the energy ranges [7.10–55.58] and
[55.58–1000] GeV, respectively. The red data points are the
measured positron flux values scaled by Ẽ3. The fitted functions
are represented by the blue lines. The vertical dashed lines and the
bands correspond to the value and the error of the energies E0

where the changes of the spectral index occur. The dashed blue
lines are the extrapolations of the power law below E0 into the
higher-energy regions. Δγ is the magnitude of the spectral index
change, see Eq. (3). The green band in (a) represents the
68% C.L. interval of the minimal model fit of Eq. (4) to the
positron flux (see text).
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To study the significance of the 1=Es measurement we
varied all six fit parameters to find the regions in six-
dimensional (6D) parameter space corresponding to the
confidence levels from 1 to 5σ with a step of 0.01σ. As
an example, the insert in Fig. 4 shows projections of the 6D
regions of 1σ (green line, 68.26% C.L.), 2σ (black line,
95.54% C.L.), 3σ (blue line, 99.74% C.L.), and 4σ (red line,
99.99% C.L.) onto the plane of parameters (1=Es − Cs).
Detailed analysis shows that a point where the parameter
1=Es reaches 0 corresponds to a confidence level of 4.07σ;
i.e., the significance of the source term energy cutoff is
established at more than 4σ, or that the positron flux in the
entire energy range cannot be described by a sum of two
power-law functions at the 99.99% C.L.
An analysis of the arrival directions of electrons and

positrons was presented in Ref. [1]. A similar analysis was
performed using the positron data of this Letter [37]. The
positron flux is found to be consistent with isotropy; the
upper limit on the amplitude of the dipole anisotropy is
δ < 0.019 at the 95% C.L. for energies above 16 GeV.
In conclusion, we have presented the precision measure-

ments of the positron flux from 0.5 GeV to 1 TeV, with a
detailed study of systematic errors based on 1.9 million
positrons. The positron flux shows complex energy depend-
ence. Its distinctive properties are (a) a significant excess
starting from 25.2� 1.8 GeVcompared to the lower-energy
trends, (b) a sharp dropoff above 284þ91

−64 GeV, (c) in the
entire energy range the positron flux is well described by the
sum of a diffuse term associatedwith the positrons produced
in the collision of cosmic rays, which dominates at low

energies, and a new source term of positrons, which
dominates at high energies, and (d) a finite energy cutoff
of the source term of Es ¼ 810þ310

−180 GeV is established with
a significance of more than 4σ. These experimental data on
cosmic ray positrons show that, at high energies, they
predominantly originate either fromdarkmatter annihilation
or from other astrophysical sources.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific
laboratory and his decision for NASA to fly AMS as a DOE
payload. We also acknowledge the continuous support
of the NASA leadership, particularly William H.
Gerstenmaier, and of the JSC and MSFC flight control
teams that have allowed AMS to operate optimally on the
ISS for over seven years. We are grateful for the support of
Jim Siegrist and his staff of the DOE including resources
from the National Energy Research Scientific Computing
Center under Contract No. DE-AC02-05CH11231. We also
acknowledge the continuous support from MIT and its
School of Science, Michael Sipser, and Boleslaw
Wyslouch. Research supported by São Paulo Research
Foundation (FAPESP) Grant No. 2014/19149-7, Brazil;
CAS, NSFC, MOST, the provincial governments
of Shandong, Jiangsu, Guangdong, and the China
Scholarship Council, China; CNRS/IN2P3, CNES,
Enigmass, and the ANR, France; Pascale Ehrenfreund,
DLR under Grant No. 50OO1403 and JARA-HPC under
Project No. JARA0052, Germany; INFN and ASI under
ASI-INFN Agreements No. 2013-002-R.0 and No. 2014-
037-R.0, Italy; the Consejo Nacional de Ciencia y
Tecnología and UNAM, Mexico; FCT under Grant
No. PTDC/FIS/122567/2010, Portugal; CIEMAT, IAC,
CDTI, and SEIDI-MINECO under Grants No. ESP2017-
87055-C2-1-P, No. SEV-2015-0548, No. MDM-2015-
0509, and No. RyC-2013-14660, Spain; the Swiss
National Science Foundation (SNSF), federal and cantonal
authorities, Switzerland; Academia Sinica and the Ministry
of Science and Technology (MOST) under Grants No. 103-
2112-M-006-018-MY3, No. 105-2112-M-001-003, and
No. CDA-105-M06, former Presidents of Academia
Sinica Yuan-Tseh Lee and Chi-Huey Wong and former
Ministers of MOST Maw-Kuen Wu and Luo-Chuan Lee,
Taiwan; the Turkish Atomic Energy Authority under Grant
No. 2017TAEK(CERN)A5.H6.F2-15, Turkey; and NSF
Grants No. 14255202 and No. 1551980, Wyle Laboratories
Grant No. 2014/T72497, and NASA NESSF Grant
No. HELIO15F-0005, the United States of America. We
gratefully acknowledge the strong support from CERN
including Fabiola Gianotti, and the CERN IT department
including Bernd Panzer-Steindel, and from the European
Space Agency including Johann-Dietrich Wörner and
Simonetta Di Pippo. We are grateful for important physics
discussions with Pasquale Blasi, Fiorenza Donato,
Jonathan Ellis, Jonathan Feng, Mischa Malkov, Igor
Moskalenko, Subir Sarkar, and Steven Weinberg.

1 10 100 1000

]
-1

 s
-1

 s
r

-2
 m2

 [
G

eV
+ e

Φ
3

E~

5

10

15

20

25
Positron Spectrum

AMS-02

Fit with Eq.(4) and 
68% C.L. band

Diffuse term

Source term

Energy [GeV]

sC  [

62 64 66 68 70 72 74

6−10×

s
]   

VeT[  
E/ 1

0.5−

0

0.5

1

1.5

2

2.5

3

1
2

3

4-1

-1-1-2 m  sr  s GeV  ]
-1

FIG. 4. The fit of Eq. (4) (green line) to the positron flux in the
energy range [0.5–1000] GeV together with the 68% C.L. interval
(green band). The exponential cutoff of the source term is
determined to be 810þ310

−180 GeV from the fit. The red data points
represent the measured positron flux values scaled by Ẽ3. The
source term contribution is represented by themagenta area and the
diffuse term contribution by the gray area. The insert shows
projections of the regions of 1σ (green contour), 2σ (black contour),
3σ (blue contour), and 4σ (red contour) significance of the 1=Es
measurement onto the plane of parameters 1=Es − Cs (see text).

PHYSICAL REVIEW LETTERS 122, 041102 (2019)

041102-7



*Also at ASI, I-00133 Roma, Italy.
†Also at ASI Space Science Data Center (SSDC), I-00133
Roma, Italy.

‡Also at Wuhan University, Wuhan 430072, China.
§Also at Sun Yat-Sen University (SYSU), Guangzhou
510275, China.

∥Also at Nankai University, Tianjin 300071, China.
[1] M. Aguilar et al., Phys. Rev. Lett. 110, 141102 (2013); L.

Accardo et al., Phys. Rev. Lett. 113, 121101 (2014).
[2] M. Aguilar et al., Phys. Rev. Lett. 113, 121102 (2014); 113,

221102 (2014).
[3] M. Aguilar et al., Phys. Rev. Lett. 121, 051102 (2018).
[4] F. Donato, N. Fornengo, and P. Salati, Phys. Rev. D 62,

043003 (2000); M. Cirelli, R. Franceschini, and A. Strumia,
Nucl. Phys. B800, 204 (2008); P. Blasi, Phys. Rev. Lett.
103, 051104 (2009); I. Cholis and D. Hooper, Phys. Rev. D
88, 023013 (2013); K. Blum, K. Chun Yu Ng, R. Sato, and
M. Takimoto, Phys. Rev. D 96, 103021 (2017).

[5] M. S. Turner and F. Wilczek, Phys. Rev. D 42, 1001 (1990);
J. Ellis, AIP Conf. Proc. 516, 21 (2000); H. C. Cheng, J. L.
Feng, and K. T. Matchev, Phys. Rev. Lett. 89, 211301
(2002); G. Kane, R. Lu, and S. Watson, Phys. Lett. B 681,
151 (2009); J. Kopp, Phys. Rev. D 88, 076013 (2013); C. H.
Chen, C. W. Chiang, and T. Nomura, Phys. Lett. B 747, 495
(2015); H. C. Cheng, W. C. Huang, X. Huang, I. Low, Y. L.
Sming Tsia, and Q. Yuan, J. Cosmol. Astropart. Phys. 03
(2017) 041; Y. Bai, J. Berger, and S. Lu, Phys. Rev. D 97,
115012 (2018).

[6] P. D. Serpico, Astropart. Phys. 39–40, 2 (2012); T. Linden
and S. Profumo, Astrophys. J. 772, 18 (2013); P. Mertsch
and S. Sarkar, Phys. Rev. D 90, 061301 (2014); N.
Tomassetti and F. Donato, Astrophys. J. Lett. 803, L15
(2015); D. Hooper, I. Cholis, T. Linden, and K. Fang, Phys.
Rev. D 96, 103013 (2017); W. Liu, X. J. Bi, S. J. Lin, B. B.
Wang, and P. F. Yin, Phys. Rev. D 96, 023006 (2017); M.
Kachelrieß, A. Neronov, and D. V. Semikoz, Phys. Rev. D
97, 063011 (2018); S. Profumo, J. Reynoso-Cordova, N.
Kaaz, and M. Silverman, Phys. Rev. D 97, 123008 (2018).

[7] P. Lipari, Phys. Rev. D 95, 063009 (2017); R. Cowsik, B.
Burch, and T. Madziwa-Nussinov, Astrophys. J. 786, 124
(2014); K. Blum, B. Katz, and E. Waxman, Phys. Rev. Lett.
111, 211101 (2013).

[8] AMS Collaboration, Phys. Rev. D (to be published).
[9] A. Kounine, Int. J. Mod. Phys. E 21, 1230005 (2012); S.

Rosier-Lees, in Proceedings of the 19th Symposium on
Astroparticle Physics in the Netherlands, Beekbergen, 2014
(unpublished); S. C. C. Ting, Nucl. Phys. B243–244, 12
(2013); S. C. Lee, in Proceedings of the 20th International
Conference on Supersymmetry and Unification of Funda-
mental Interactions (SUSY 2012), Beijing, 2012 (unpub-
lished); M. Aguilar, in Proceedings of the XL International
Meeting on Fundamental Physics, Centro de Ciencias de
Benasque Pedro Pascual, 2012 (unpublished); S. Schael,
in Proceedings of the 10th Symposium on Sources and
Detection of Dark Matter and Dark Energy in the Universe,
Los Angeles, 2012 (unpublished); B. Bertucci, Proc. Sci.
EPS-HEP (2011) 67; M. Incagli, AIP Conf. Proc. 1223, 43
(2010); R. Battiston, Nucl. Instrum. Methods Phys. Res.,
Sect. A 588, 227 (2008).

[10] F. Hauler et al., IEEE Trans. Nucl. Sci. 51, 1365 (2004); Ph.
Doetinchem et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 558, 526 (2006); Th. Kirn, Nucl. Instrum. Methods Phys.
Res., Sect. A 706, 43 (2013).

[11] V. Bindi et al., Nucl. Instrum. Methods Phys. Res., Sect. A
743, 22 (2014) and references therein.

[12] B. Alpat et al., Nucl. Instrum. Methods Phys. Res., Sect. A
613, 207 (2010).

[13] K. Lübelsmeyer et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 654, 639 (2011).

[14] C. Adloff et al., Nucl. Instrum. Methods Phys. Res., Sect. A
714, 147 (2013).

[15] Ph. von Doetinchem, W. Karpinski, Th. Kirn, K.
Lübelsmeyer, St. Schael, and M. Wlochal, Nucl. Phys.
B197, 15 (2009).

[16] M. Aguilar-Benitez et al., Nucl. Instrum. Methods Phys.
Res., Sect. A 614, 237 (2010); F. Giovacchini,
Nucl. Instrum. Methods Phys. Res., Sect. A 766, 57
(2014).

[17] A. Kounine, Z. Weng, W. Xu, and C. Zhang, Nucl. Instrum.
Methods Phys. Res., Sect. A 869, 110 (2017).

[18] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 506, 250 (2003); J. Allison et al., IEEE Trans. Nucl.
Sci. 53, 270 (2006).

[19] C. Størmer, The Polar Aurora (Oxford University Press,
London, 1950).

[20] J. Alcaraz et al., Phys. Lett. B 484, 10 (2000).
[21] C. C. Finlay et al., Geophys. J. Int. 183, 1216 (2010); E.
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with Ẽ≡ xlw.

[26] O. Adriani et al., Phys. Rev. Lett. 111, 081102 (2013).
[27] M. Ackermann et al., Phys. Rev. Lett. 108, 011103

(2012).
[28] C. Grimani et al., Astron. Astrophys. 392, 287 (2002).
[29] M. Boezio et al., Adv. Space Res. 27, 669 (2001).
[30] M. Aguilar et al., Phys. Lett. B 646, 145 (2007).
[31] S. W. Barwick et al., Astrophys. J. 498, 779 (1998); M. A.

DuVernois et al., Astrophys. J. 559, 296 (2001).
[32] I. V. Moskalenko and A.W. Strong, Astrophys. J. 493, 694

(1998); A. E. Vladimirov, S. W. Digel, G. Jóhannesson,
P. F. Michelson, I. V. Moskalenko, P. L. Nolan, E. Orlando,
T. A. Porter, and A.W. Strong, Comput. Phys. Commun.
182, 1156 (2011).

[33] L. Ali Cavasonza, H. Gast, M. Kramer, M. Pellen, and S.
Schael, Astrophys. J. 839, 36 (2017). This Letter also uses a
minimal model analysis assuming a charge symmetric
source term, and the AMS positron, electron, and combined
fluxes based on 2.5 year of data [2].

PHYSICAL REVIEW LETTERS 122, 041102 (2019)

041102-8

https://doi.org/10.1103/PhysRevLett.110.141102
https://doi.org/10.1103/PhysRevLett.113.121101
https://doi.org/10.1103/PhysRevLett.113.121102
https://doi.org/10.1103/PhysRevLett.113.221102
https://doi.org/10.1103/PhysRevLett.113.221102
https://doi.org/10.1103/PhysRevLett.121.051102
https://doi.org/10.1103/PhysRevD.62.043003
https://doi.org/10.1103/PhysRevD.62.043003
https://doi.org/10.1016/j.nuclphysb.2008.03.013
https://doi.org/10.1103/PhysRevLett.103.051104
https://doi.org/10.1103/PhysRevLett.103.051104
https://doi.org/10.1103/PhysRevD.88.023013
https://doi.org/10.1103/PhysRevD.88.023013
https://doi.org/10.1103/PhysRevD.96.103021
https://doi.org/10.1103/PhysRevD.42.1001
https://doi.org/10.1063/1.1291467
https://doi.org/10.1103/PhysRevLett.89.211301
https://doi.org/10.1103/PhysRevLett.89.211301
https://doi.org/10.1016/j.physletb.2009.09.053
https://doi.org/10.1016/j.physletb.2009.09.053
https://doi.org/10.1103/PhysRevD.88.076013
https://doi.org/10.1016/j.physletb.2015.06.035
https://doi.org/10.1016/j.physletb.2015.06.035
https://doi.org/10.1088/1475-7516/2017/03/041
https://doi.org/10.1088/1475-7516/2017/03/041
https://doi.org/10.1103/PhysRevD.97.115012
https://doi.org/10.1103/PhysRevD.97.115012
https://doi.org/10.1016/j.astropartphys.2011.08.007
https://doi.org/10.1088/0004-637X/772/1/18
https://doi.org/10.1103/PhysRevD.90.061301
https://doi.org/10.1088/2041-8205/803/2/L15
https://doi.org/10.1088/2041-8205/803/2/L15
https://doi.org/10.1103/PhysRevD.96.103013
https://doi.org/10.1103/PhysRevD.96.103013
https://doi.org/10.1103/PhysRevD.96.023006
https://doi.org/10.1103/PhysRevD.97.063011
https://doi.org/10.1103/PhysRevD.97.063011
https://doi.org/10.1103/PhysRevD.97.123008
https://doi.org/10.1103/PhysRevD.95.063009
https://doi.org/10.1088/0004-637X/786/2/124
https://doi.org/10.1088/0004-637X/786/2/124
https://doi.org/10.1103/PhysRevLett.111.211101
https://doi.org/10.1103/PhysRevLett.111.211101
https://doi.org/10.1142/S0218301312300056
https://doi.org/10.1016/j.nuclphysbps.2013.09.028
https://doi.org/10.1016/j.nuclphysbps.2013.09.028
https://doi.org/10.1063/1.3395995
https://doi.org/10.1063/1.3395995
https://doi.org/10.1016/j.nima.2008.01.044
https://doi.org/10.1016/j.nima.2008.01.044
https://doi.org/10.1109/TNS.2004.832901
https://doi.org/10.1016/j.nima.2005.12.187
https://doi.org/10.1016/j.nima.2005.12.187
https://doi.org/10.1016/j.nima.2012.05.010
https://doi.org/10.1016/j.nima.2012.05.010
https://doi.org/10.1016/j.nima.2014.01.002
https://doi.org/10.1016/j.nima.2014.01.002
https://doi.org/10.1016/j.nima.2009.11.065
https://doi.org/10.1016/j.nima.2009.11.065
https://doi.org/10.1016/j.nima.2011.06.051
https://doi.org/10.1016/j.nima.2011.06.051
https://doi.org/10.1016/j.nima.2013.02.020
https://doi.org/10.1016/j.nima.2013.02.020
https://doi.org/10.1016/j.nuclphysbps.2009.10.025
https://doi.org/10.1016/j.nuclphysbps.2009.10.025
https://doi.org/10.1016/j.nima.2009.12.027
https://doi.org/10.1016/j.nima.2009.12.027
https://doi.org/10.1016/j.nima.2014.04.036
https://doi.org/10.1016/j.nima.2014.04.036
https://doi.org/10.1016/j.nima.2017.07.013
https://doi.org/10.1016/j.nima.2017.07.013
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/S0370-2693(00)00588-8
https://doi.org/10.1111/j.1365-246X.2010.04804.x
https://doi.org/10.1186/s40623-015-0228-9
https://doi.org/10.1103/PhysRevLett.117.091103
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.041102
https://doi.org/10.1103/PhysRevLett.114.171103
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1016/0168-9002(94)01112-5
https://doi.org/10.1103/PhysRevLett.111.081102
https://doi.org/10.1103/PhysRevLett.108.011103
https://doi.org/10.1103/PhysRevLett.108.011103
https://doi.org/10.1051/0004-6361:20020845
https://doi.org/10.1016/S0273-1177(01)00108-9
https://doi.org/10.1016/j.physletb.2007.01.024
https://doi.org/10.1086/305573
https://doi.org/10.1086/322324
https://doi.org/10.1086/305152
https://doi.org/10.1086/305152
https://doi.org/10.1016/j.cpc.2011.01.017
https://doi.org/10.1016/j.cpc.2011.01.017
https://doi.org/10.3847/1538-4357/aa624d


[34] R. A. Caballero-Lopez and H. Moraal, J. Geophys. Res.
109, A01101 (2004); L. Gleeson and W. Axford, Astrophys.
J. 154, 1011 (1968).

[35] R. Trotta, G. Jóhannesson, I. V. Moskalenko, T. A. Porter, R.
Ruiz de Austri, and A.W. Strong, Astrophys. J. 729, 106
(2011).

[36] T. Delahaye, J. Lavalle, R. Lineros, F. Donato, and N.
Fornengo, Astron. Astrophys. 524, A51 (2010).

[37] M. A. Velasco, Ph. D. thesis, Universidad Complutense de
Madrid, 2018; S. Zeissler, Ph. D. thesis, Karlsruhe Institute
of Technology, 2018.

PHYSICAL REVIEW LETTERS 122, 041102 (2019)

041102-9

https://doi.org/10.1029/2003JA010098
https://doi.org/10.1029/2003JA010098
https://doi.org/10.1086/149822
https://doi.org/10.1086/149822
https://doi.org/10.1088/0004-637X/729/2/106
https://doi.org/10.1088/0004-637X/729/2/106
https://doi.org/10.1051/0004-6361/201014225

